4.3 Analysis of Non-Periodic Continuous-Time Signals

Fourier transform

A non-periodic signal z (¢):

x (t)
Periodic extension Z (t) of the signal z (¢):
Z(t)
R %% e
Period = T, |
2(t)=...4+2(t+To)+z({t)+2(t—To)+z(t—2To) +...
B(t)= »  z(t—kTo)

k=—cc

If the period T} is allowed to become very large, the periodic signal T (¢) would start to
look more and more similar to = (¢). In the limit we would have

lim [Z(t)] =z () (4.117)

To—00




4.3 Analysis of Non-Periodic Continuous-Time Signals

Fourier transform (continued)

Fourier transform for continuous-time signals

Synthesis equation: (Inverse transform)

z(t) = L /O;X(w) eIt duw

2m

Analysis equation: (Forward transform)

X (w) :/O:Om(t) e JWtdt

Shorthand notation:

X(w)=F{z@)}, =z@)=F {X(w)}

z (t) <2 X (w)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Fourier transform (continued)

Fourier transform for continuous-time signals (using f instead of w)

Synthesis equation: (Inverse transform)

z (t) :./m X (f) &I df

Analysis equation: (Forward transform)

X(f):/oo z(t) e 327 Ft gy

o0

Note the lack of the scale factor 1/27 in front of the integral of the inverse transform
when f is used. This is consistent with the relationship dw = 27 df.




4.3 Analysis of Non-Periodic Continuous-Time Signals

But what is the Fourier Transform? A visual introduction. - YouTube


https://www.youtube.com/watch?v=spUNpyF58BY

4.3 Analysis of Non-Periodic Continuous-Time Signals

Existence of Fourier transform

Let Z(¢) be defined as
1 [ -
() = — / X (w) 7t du

s(t):m(t)—é(t):m(t)—% l/O:oX(w) eI9t doy

For perfect convergence we want € (t) = 0 for all £. However, this is not possible at
time instants for which z (¢) exhibits discontinuities.

Dirichlet conditions for existence of the Fourier transform

9 The signal z () must be integrable in an absolute sense:

/Oo z(t)| dt < oo

QO
@ If the signal z (¢) has discontinuities, it must have at most a finite number of
them in any finite time interval.

9 The signal z (¢) must have at most a finite number of minima and maxima in any
finite time-interval.

A




4.3 Analysis of Non-Periodic Continuous-Time Signals

Developing further insight Example 4.7

cr = d sinc(kd)
An isolated rectangular pulse z (¢) = ATII (¢/7):

z ()

(A

T
2

[l ]

Periodic extension of z () into a pulse train:

()

~T —— 0 I T

D
SV}

EFS coefficients of Z (¢):
cx = Ad sinc (kd)

A
Duty cycle: d — Z = e — =L sinc (kT/To)
To To




4.3 Analysis of Non-Periodic Continuous-Time Signals

Developing further insight (continued)

Multiply both sides by To:  ¢cxTo = AT sinc (kfoT)

Graph coefficients ¢xTpo for A = 1, 7 = 0.1 seconds, Tp — 0.25 seconds, fo — 4 Hz:

a1y
T T T T T T T T T T T
o 01p e ]
= o0st __ { N k— 25 |
= / ' /
< 0le et -, T T S P il S .
S S v & A
—0.05 L I I I I I I I I I I
—10 —8 —6 —4 -2 0 2 4 6 8 10
Index k

Use actual frequencies in Hz on the horizontal axis:
crTo

= \ N
E . —— =10
= 005f X { f=—==10Hz |
= _ /
= 0 o P, T T . - 1 ® -
—0.05 . . . . , , , .
—40 ~30 —20 ~10 0 10 20 30 40

f (Hz)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.12

Fourier transform of a rectangular pulse

Using the forward Fourier transform integral, find the Fourier transform of the isolated

rectangular pulse signal

m(t):An(i)

T

Solution:

Use Fourier transform integral:

z () Analysis equation: (Forward transform)
A - 7
X(w):/ z(t) e I¥tdt
_Tx'IQ /"_r"IQ t T (f) =A sin (Lv'()f + 9)
:ifﬂu}u!+b‘) _ if;‘ﬂwt"*‘f”
2 2j
; T/2

ot e vt 2A wT

(A)Ej dt = A - - —— sln ?
—Jw w
/2 J T/2

X (@) ./7/2

Use the sinc function:

X (w) =

T

sin(wT/2)

(w7/2)

. wT
— AT sinc (—)

27




4.3 Analysis of Non-Periodic Continuous-Time Signals
Example 4.12 (continued)

Substitute w = 27 f:
X (f)= AT sinc (f1)

The peak value of the spectrum is AT, and occurs at the frequency f = 0.
The zero crossings of the spectrum occur at frequencies that satisfy fr = k,
where k is any non-zero integer.




4.3 Analysis of Non-Periodic Continuous-Time Signals

Fourier transform of isolated pulse

2 (1) X(f)
(a)

t (s)

MVERVE-

x (t)

(b)

i (s)

—0.25 0.25

f (Hz)

(c) (1)

-1 1

YAVTY Y ; ; : 1 (Hz)
9




4.3 Analysis of Non-Periodic Continuous-Time Signals

Fourier transform of isolated pulse

Observations on the transform of isolated pulse:

@ Largest values of the spectrum occur at frequencies close to f = 0. Thus, low
frequencies are more significant in the spectrum, and the significance of frequency
components decreases as we move further away from f = 0 in either direction.

@ The zero-crossings of the spectrum occur for values of f that are integer
multiples of 1/7. If the pulse width is decreased, zero-crossings move further
away from the frequency f — 0 resulting in the spectrum being stretched out in
both directions. This increases the relative significance of large frequencies.
Narrower pulses have frequency spectra that expand to higher frequencies.

9 If the pulse width is increased, zero-crossings of the spectrum move inward, closer
to the frequency f = 0 resulting in the spectrum being squeezed in from both
directions. This decreases the significance of large frequencies, and causes the
spectrum to be concentrated more heavily around the frequency f — 0. Wider
pulses have frequency spectra that are more concentrated at low frequencies.




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.14

Transform of the unit-impulse function

Find the Fourier transform of the unit-impulse function.

Solution:
s8] 3 .
J—“{a(t)}:/ §(t) e 79Widt — e I¥t fo =1

Alternative approach:

1 t . .
qg(t)=—1I (—) (Pulse with unit area)
a a

Q(f) = F{aq(t)} = sinc(fa)

Express the unit-impulse function using g (¢):

()= lim {g®)} =  F{8®)}=lim{Q(f)} = lim {sinc(fe)} = 1




4.3 Analysis of Non-Periodic Continuous-Time Signals
Example 4.15

Fourier transform of a right-sided exponential signal

Determine the Fourier transform of the right-sided exponential signal

z(t)=e atu(t]

with a > 0.

Solution:




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.16

Fourier transform of a two-sided exponential signal

Determine the Fourier transform of the two-sided exponential signal given by

Solution:
o0
X (w) = e Gtle Wt
o0
Split the integral into two halves:
0 b iwt o0 - 1 1 2a
X(w):/eaejwdt—{—/eaejwdt: — + — =
J—oo Jo a—Jjw a4+jw a4+ w?




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.16 (continued)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform

Linearity:

Consider any two signals z1 (t) and z2 (¢) with their respective transforms:

21 (¢) <25 X1(w)  and  z3(t) < X2 (w)

Linearity of the Fourier transform

For any two constants a1 and as:

a1 T (‘t) + as zo (‘t) <i> a1 X1 (w) 4 oy X9 (w)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Duality:

Swap the roles of the signal and the transform:

Duality property

z (1) < X (w) implies that X (¢) PN 21z (—w)

It is more convenient to express the duality property using the frequency f instead of
the radian frequency w:

Duality property (using f instead of w)

z (t) L X (f) impliesthat X (¢) L z(—f)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.19

Fourier transform of the sinc function

Find the Fourier transform of the signal

z (t) = sinc (%)

Solution:

Recall that the Fourier transform of a rectangular pulse was found in Example 4.12:

J-"{AH (;) } — Ar sinc (%)

Let 7 = 27 so that the argument of the sinc function becomes w:

Flan(L) ) —era e

J—"{ %n (%) } — sinc (w)

Let A =1/2m:




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.19 (continued)

Apply the duality property:

F {sinc(t)} - II (i) o (i)

2m 27

Using f instead of w yields a result that is easier to remember:

F {sinc()} = I (f)

x(t) =11(t) X (f) =sine (f)
1
1
J'C'
t \._//\ — f
05 | 05 N U
—4 -2 2 4
~. (a) -
I (1) = X () = sinc (1) A PG X(N)=z(=H=L(-f)
1 V. N
- - l
ra S
r
JAN AN
! IV ! VI f —0.5 0.5 !
-4 -2 2 4

(b)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.20

Transform of a constant-amplitude signal

Find the Fourier transform of the constant-amplitude signal

z(t) =1, allt

Solution:

Direct application of the Fourier transform integral does not work:

X (w) = /m z(t) e j‘*’tdt:l/m (1) e 79t gt

o0 o0

Recall that, in Example 4.14, the Fourier transform of the unit-impulse signal was
found to be a constant for all frequencies:

F{o(t)} =1, allw
Apply the duality property:
F{l} =276 (—w) =276 (w)

Using f instead of w:

F{1} = é(f)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.21

Another example of using the duality

property

Find the Fourier transform of the signal

1

1) =
2(t)= 32,

[va]

Solution:

Recall that, in Example 4.16 we have found

oalt F 2a
a? + w?

Apply duality property

2a

T, ome olw
a? + 2
Multiply both the numerator and the denominator of the time-domain component by
2: 4
a
T, ome alw

2a? + 2¢?




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.21 (continued)

3
2a% = 3 - a,:\/;

246 3
\/_ il 2me \/;w
3+ 2t2

Choose

so that

Scale both sides with 2+/6:

1 F T \/gjw

e
3+ 2¢t2 V6

—0.6 —0.4 0.6




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Symmetry of the Fourier transform:

A transform X (w) is said to be conjugate symmetric if it satisfies

X' (w)=X(—w) for all w

A transform X (w) is said to be conjugate antisymmetric if it satisfies

X" (w)=-X(—w) for all w

Symmetry of the Fourier transform

z (t): Real, Im{z(¢t)} =0 impliesthat X*(w) =X (—w)

z (t): Imag, Re{z(t)} =0 impliesthat X*(w)=- X (—w)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.24

Symmetry properties for the transform of right-sided exponential signal

The Fourier transform of the right-sided exponential signal z (¢t) = e %t u () was
found in Example 4.15 to be

1
a+ jw

X(f) _ .F{e"""atu(t)} _

Elaborate on the symmetry properties of the transform.

Solution:

Since z (t) is real-valued, its transform must be conjugate symmetric:

X*(W):(a:jw)*:a_ljw’ X(_w):(a%—ljw)

It follows that

1

a— Jjw

W—r—w

X' (w) =X (—w) = X (w) is conjugate symmetric.




4.3 Analysis of Non-Periodic Continuous-Time Signals
Properties of the Fourier transform (continued)

Transforms of even and odd signals:

Real valued signal with even symmetry

z(—t) =z (t) ,allt impliesthat Im{X (w)} =0,allw

Real valued signal with odd symmetry

z(—t) = —z(t) ,allt implies that Re{X (w)} =0,allw




4.3 Analysis of Non-Periodic Continuous-Time Signals
Example 4.25

Transform of a two-sided exponential

signal

Elaborate on the symmetry properties of

Solution:

The Fourier transform is

2a

z(t)isreal = X (w) is conjugate symmetric.
z(t)iseven = X (w) is real.

Since X (w) is both conjugate symmetric and real = X (w) is even.




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.26

Transform of a pulse with odd symmetry

Determine the Fourier transform of the signal

1
—1, -1<t<0
z(t) = 1, 0<t<l1 = |
0, t<—-1 or t>1
—1

and show that it is purely imaginary.

Solution:

Through direct use of the forward transform integral:

X(w):./I(—l)e j‘*’tdtJrl[O (1) e j“’tdt:% [cos (w) — 1]

I {X(f)}




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Time shifting:

Time shifting property

For a transform pair
z(t) < X (w)

it can be shown that

z(t—T) PN X (w) e jwr




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.27

Time shifting a rectangular pulse

Using the time shifting property, find the 2 (t)
transform of the isolated rectangular
pulse given by A
t—T1/2
z(t) = All ( 7/ ) T t
-
Solution:

The transform of a rectangular pulse with amplitude A, width 7 and center at £ =0
was found in Example 4.12:

t F . WwT
ATl (—) +— AT sinc (—)
T 2T

Use time-shifting property:

t— 2 ,
ATl ( T/ ) al AT sinc (ﬂ) e JwT/2
T 2T




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.28

Time shifting a two-sided
exponential signal

Determine the Fourier transform of
the signal

where a > 0.

Solution:

In Example 4.16 it was determined that

]:{eat}: 2a

a? + w?

Use the time shifting property:

Dae JWT

a? + w?

X(w):]:{e alt=T }:




4.3 Analysis of Non-Periodic Continuous-Time Signals
Properties of the Fourier transform (continued)

Frequency shifting:

Frequency shifting property

For a transform pair
z(t) < X (w)

it can be shown that

z (t) e?wot PN X (w — wop)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Modulation property:

Modulation property is an interesting consequence of the frequency shifting property
combined with the linearity of the Fourier transform.

Modulation property

For a transform pair
z(t) 2 X (w)

it can be shown that

1

z (t) cos(wot) 1 5 1X (0 —wo) + X (w + wo))

and
[X (w —wo) e 37/ 2 + X (w + wo) ejﬂ/g}

b | =

z (t) sin(wot) PN




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.29

Solution:

Modulated pul
Let p(£) be defined as

Find the Fourier transform of the modulated pulse
given by A (i)
p(t) .
| cos(2mfot), |t/ <T _
z(t) — 0, 1t > Express z (t) using p (%):

z (t) = p(t) cos (27 fot)

z(t) = p(t) cos (27 fot)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.29 (continued)

The transform of the pulse p (%) is

P(f) = F{p(t)} = 27 sinc(27f)
Apply the modulation property:

X (w) =3 P(f ~ fo) + 5 P(f + fo)

—7 sinc (2’]" (f + fo)) + 7 sinc (2’?' (f -

fo))

N Hn
VARV TV VY




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Time and frequency scaling:

Time and frequency scaling property
For a transform pair

z(t) < X (w)
it can be shown that

z (at) PN %X (%)

The parameter a is any nonzero and real-valued constant.




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Differentiation in the time domain:

Differentiation in time property

For a given transform pair
z(t) <2 X (w)

it can be shown that n

— [2()] < ()" X (w)

If we choose to use f instead or w, then

) s ()" X (5)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Properties of the Fourier transform (continued)

Differentiation in the frequency domain:

Differentiation in frequency property

For a transform pair
z(t) < X (w) (1)

it can be shown that

If we choose to use f instead or w, then

n

. n F d
(=727m8)" 2 (t) «— #—n[x(f)]




4.3 Analysis of Non-Periodic Continuous-Time Signals
Properties of the Fourier transform (continued)

Multiplication of two signals:

Multiplication property

For two transform pairs

21 (t) <2 X1(w) and z2(t) <o Xo(w)

it can be shown that

21 (t) 22 (t) <2 %xl (W) * X2 (w)

If we choose to use f instead or w, then

21 () 22 (t) < X1(f)* X2 (f)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.34

Transform of a truncated sinusoidal signal

A sinusoidal signal that is time-limited in the interval —7 < ¢t < 7 is given by

cos (27 fot) , —T <t T
z(t) = ,
0, otherwise

Determine the Fourier transform of this signal using the multiplication property.

Solution:
Let z; (¢) and z2 () be defined as

z1 (t) = cos(2mfot) and z2(t) =1I (%)

so that t
z(t) = z1 (t) 22 (t) = cos (27 fot) II (E)

X1 (f):%5(f+f0)+%5(f—fo) and X2 (f) = 27 sinc(27f)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Example 4.34 (continued)

Use multiplication property:

X(f) =X1(f)*x X2(f)

—r sinc (27(f + fo) ) + 7 sinc (27(f - fo))

Interactive demo: ft demol2.m

Explore the multiplication property of the Fourier transform. Change values of
parameters 7 and fo and observe the effects on the signal and its transform.

L

[

efer o, Pages 362 through 365,
Example 4 24, Eqns. [4.283)
through (4 2903

Multiplication Property of the Fourier Transform

Hatwidth of the pulse (tau) 1 Erequancy () |

[ 2| oI

Signals sy it). =a(t), arid w1 0e) =a (£) Transiorms X (f), Xe[f).and X [F)=Xaif)
A 08 :
sy
=
= 02 R
0
b -
el 1‘8 7
§ 05 ?4 ...... -
g - m g . ﬂ i
=05 : i : = ;
2o \Aﬂnﬂnﬂ .
S =, Y
: W : ) :
g435— - 3 Iy AL " I
w - ; = i : i
-3 -2 -1 v} 1 2 3 # 0 -10 a 10 20 :
t [s60] £ Hz] I




4.3 Analysis of Non-Periodic Continuous-Time Signals
Properties of the Fourier transform (continued)

Integration:

Integration property

For a transform pair

it can be shown that




4.3 Analysis of Non-Periodic Continuous-Time Signals

Property Signal Transform

Linearity ax(t)+ Bz (t) aXi(w)+ X2 (w)

Duality X (1) 2z (—w)

Conjugate z (t) real X*(w) =X (—w)

symmetry Magnitude: X (—w)| = |X (w)]
Phase: O (—w)=-0(w)
Real part: X (—w) =X, (w)
Imaginary part: X; (—w) = —X; (w)

Conjugate z (t) imaginary X*(w)=-X (—w)

antisymmetry Magnitude: X (—w)| = | X (w)]
Phase: O(—w)=-0(w)Fr
Real part: X, (—w)=-X, (w)
Imaginary part: X; (—w) = X; (w)

Even signal z(—t)=az(t) Im{X (w)} =0

Odd signal z(—t) = —x(t) Re{X (w)} =0

Time shifting z(t —T) X (w) e w7

Frequency shifting z (t) elwot X (w — wp)

Modulation property z (t) cos(wot) % [X (w—wo) + X (w+ wo)]

Time and frequency scaling x (at) i X (E)

N |la a

Differentiation in time jt” [z (¢)] (jw)" X (w)

Differentiation in frequency (—jt)" z () d‘n (X (w)]

Convolution x1 (t) * xo (t) X1 (w) X2 (w)

Multiplication x1 (t) 22 (1) — X1 (w) * X2 (w)

27
t ,
Integration f () dA X W) +7X(0)6(w)




4.3 Analysis of Non-Periodic Continuous-Time Signals

Parseval's theorem

Parseval's theorem

For a periodic power signal Z (¢) with period of Top and EFS coefficients {cx} it can be

shown that
1 to+70
'3.7/ @) dt= Y ol
0 .

t
0 k——o00

For a non-periodic energy signal z (t) with a Fourier transform X (f), the following

holds true: - -~
[Cle@ra= [ xpre

(s o]




4.4 Energy and Power in the Frequency Domain

Energy and power spectral density

Power spectral density for a periodic signal

Se(f)= > lexl? 6(f —kfo)
k=—o00

Sz (w) =27 Z crl? 8 (w — kwo)
k=—o00

Compute the normalized average power of Z (¢) that is within a specific frequency
range (— fo, fo):

fo wo
Py in (- fo, fo) = / Se(f) df = — [ Su(w) dw

J —fo 27 J - wo




4.4 Energy and Power in the Frequency Domain

Energy and power spectral density

Energy spectral density for a non-periodic signal

Gz (f) =X ()P

Gz (w) = | X (w)?

Compute the normalized average energy of z (¢) that is within a specific frequency
range (— fo, fo):

fo wo
B, in (—fo,fo)—/ Co (f) df = —

— Gz (w) dw
J— fo 21 J g




4.4 Energy and Power in the Frequency Domain

Energy and power spectral density (continued)

Some non-periodic signals are power signals, therefore their energy cannot be
computed. One example of such a signal is the unit-step function. The normalized
average power in a non-periodic signal is

1 T/2 5
P; = lim —/ z(t)© dt
T.

T-—00 T/2

Power spectral density for a non-periodic power signal

o 1 2
st pm [ 2010
where
z(t) , —T/2 <t<T/2
27 (8) = 0 otherwise
and /2
X7 (f) = F{or (8)} = / Lo J2mft gy
S




4.4 Energy and Power in the Frequency Domain

Energy and power spectral density

Energy spectral density for a non-periodic signal

Gz (f) = | X ()7

Gz (w) = | X (w) 2

Compute the normalized average energy of z (t) that is within a specific frequency

range (— o, fo)

fo wp
E:in (—fo,fo):[ Gz (f) d :— / Gz (w) d
v — fo wg




4.4 Energy and Power in the Frequency Domain

Example 4.39

Power spectral density of a sinusoidal signal

Find the power spectral density of the signal £ (t) = 5 cos (2007t).

Use Euler’s formula: 5 ooomt , B _iooomt
z(t) = —e + 5 €
EFS coefficients:
-1 —¢€1 — 5

The fundamental frequency is fo = 100 Hz. The power spectral density is

Sz (f) = Z cnl? 8§(f —100n) = 24—55(f+100)+%5(f—100)

n— 00

25 .
.




4.4 Energy and Power in the Frequency Domain
Example 4.38

Power spectral density of a periodic pulse train

The EFS coefficients for the periodic pulse train Z (t) are
1 .
ck = 7 sinc (k/3)

Determine the power spectral density for z (¢). Also find the total power, the dc
power, the power in the first three harmonics, and the power above 1 Hz.

Solution: The period of the signal is To — 3 s, and therefore the fundamental
frequency is fo = % Hz. The power spectral density is

cO

Sz (f) = Z ‘%sinc(k/B)

k— oo

"5 k/3)




4.4 Energy and Power in the Frequency Domain
Example 4.5

- 3 (S204/3)) parics

Example 4.38 (continued) &

The total power in the signal z (¢):

1 to+To 5 1 [0.5 )
P — = [ s(6)% at— L / (1) dt — 0.3333
To . to 3.

The dc power in the signal z (¢):
Pi. — co/? =(0.3333)% = 0.1111

The power in the fundamental frequency:

Pr=lc 1%+ c1?=2 1/ =2(0.0760) = 0.1520




4.5 System Function Concept

System function concept

The system function is the Fourier transform of the impulse response:

H(w) =

o0

Fi{h(t)} = [ h(t) e 79t dt

O

In general, H (w) is a complex function of w, and can be written in polar form as

H(w) = H(w)| e?®)




4.5 System Function Concept

Example 4.43

System function for the simple RC circuit n

The impulse response of the RC circuit shown — AN

was found in Example 2.18 to be

z(t)

1 .;.
h(t):%e ...... tKRCu(t) B

\ |

Determine the system function.

Solution:

Take the Fourier transform of the impulse response:

* 1 t/RC _—jwt 1
H(w) = —e e JYtdt =
Jo

RC 1+ jwRC

To simplify notation, define w. = 1/RC:"

1
1+ 7 (w/we)

H(w) =




4.5 System Function Concept

Example 4.43 (continued)

The magnitude and the phase of the system function are

1

H(w) = and O(w) = £H(w) = —tan ' (w/we)

1+ (w/we)?

Interactive demo: sf _demol.m

Vary circuit parameters R and C, and observe the effects on the magnitude and the

phase of the system functlon, The value of the system function at the frequency w, is H (w.) = 1/ (1 + j), and the
D == corresponding magnitude is |H (w.)| = 1/ V2. Thus, w,. represents the frequency at which
the magnitude of the system function is 3 decibels below its peak value at w = 0, that is,

H (w,)] 1
20 log — | =201 — | = -3dB
PR10 { H (0)] o810 |5

=M | The frequency w, is often referred to as the 3-dB cutoff frequency of the system.
=4 Software resources:




4.5 System Function Concept

System function concept (continued)

Obtaining the system function from the differential equation:

1. Using the time differentiation property, write the Fourier transform of each term
in the differential equation:

dky (f) F . k
— (Jw)” Y (w k=0,1,...
= (jw)* ¥ ()
— (Jw)” X (w E—=0,1,...
= (jw)* X (w)
2. Compute the system function as the ratio of the output transform to the input

transform:
Y (w)

)= X ()




4.5 System Function Concept

Example 4.44

Finding the system function from the differential equation

Determine the system function for a CTLTI system described by the differential
equation
d?y (¢ dy (t
y(t)  , ()
dt? dt

+26y(t) = z ()

Solution:

Take the Fourier transform of both sides of the differential equation:

(w)? ¥ (W) +2 (jw) ¥ (w) + 26 (w) = X (w)

[(26 - wz) - j2w} Y (w) = X (w)
The system function is

Y (w) 1
X (w) (26— w?)+ 52w

H(w) =




4.6 CTLTI Systems with Periodic Input Signals

CTLTI systems with periodic input signals

Periodic signal representation using TFS:

o0 o0
£(t) = a0+ Z ar cos (kwot) + Z br sin(kwot)
k—1 k=1

Periodic signal representation using EFS:

cO

7 (t) = Z c elkwot

k——00

If a periodic signal is used as input to a CTLTI system, the superposition property can
be utilized for finding the output signal.




4.6 CTLTI Systems with Periodic Input Signals

Response of a CTLTI system to periodic input signal

Let & (t) be a signal that satisfies the existence conditions for the Fourier series:

o0

z(t) = Z ckejkwot

k——o00
If Z () is used as the input signal to a CTLTI system, the response of the system is

O

Sys{& (t)} = » ek H (kuwo) e*uot

k——o0

Important observations:
@ For a CTLTI system driven by a periodic input signal, the output signal is also
periodic with the same period.

9 If the EFS coefficients of the input signal are {cx; k = 1,...,00} then the EFS
coefficients of the output signal are {cx H (kwo) ; k =1,...,00}.




4.7 CTLTI Systems with Non-Periodic Input Signals

CTLTI systems with non-periodic input signals

Signal-system interaction
y(t):h(t)*m(t):/ h(A) z(t— ) dX
J oo

Assume that
9 the system is stable ensuring that H (w) converges, and

@ the input signal has a Fourier transform.
Y(w) = H(w) X (w)

Y(w) = H(w) X(w)

AY (w) = £4X (w) + © (w)




4.7 CTLTI Systems with Non-Periodic Input Signals

Example 4.47

Pulse response of RC circuit revisited R

Consider the RC circuit shown. Let + VVV
fe = 1/RC = 80 Hz. Determine the
Fourier transform of the response of the

) |
/|

system to the unit pulse input signal .
z (t) =II(2). =

Solution:

The system function of the RC circuit was found in Example 4.43 to be

H(f)= ———
- 1+7(f/fe)

The transform of the input signal is
X (f) = sinc(f)
Using fo — 80 Hz, the transform of the output signal is

;f sinc ( f)
1+ (5)

Y(f)=H(f) X(f) =




4.7 CTLTI Systems with Non-Periodic Input Signals

1
Y (f) = H(f) X () = ——r= sinc(f)
1+ (%
Example 4.47 (continued)
Magnitude of the output transform:
Y(f) =~ sinc(f)
f
-+ (55)

Phase of the output transform

LY (f) = —tan ! (%) + £ [sinc(f)]




